Dear Aspirants, Our IBPS Guide team is providing new series of Quantitative Aptitude Questions for RRB Clerk Prelims 2021 so the aspirants can practice it on a daily basis. These questions are framed by our skilled experts after understanding your needs thoroughly. Aspirants can practice these new series questions daily to familiarize with the exact exam pattern and make your preparation effective.
Simplification
Directions (1-5): What value should come in the place of (?) in the following questions.
1) 24% of 400 – 18 * 4 = ? ÷ 3
A.72
B.78
C.88
D.80
E.84
2) (132 * 5) ÷ 26 + 87.5 = ?
A.110
B.115
C.120
D.125
E.130
3) (3/8) * (296 – (32 * 4)) = ? * 9
A.3
B.7
C.9
D.1
E.0
4) (143 * 5) ÷ 28 = ? – (13 * 30)
A.680
B.730
C.780
D.820
E.880
5) 456 ÷ 19 + 76 = (? * 20) ÷ 3
A.15
B.12
C.18
D.20
E.23
Quadratic equation
Directions (06-10): Following question contains two equations as I and II. You have to solve both equations and determine the relationship between them and give answer as,
6) I) x2 + 41x + 414 = 0
II)y2+ y – 306 = 0
A.x > y
B.x ≥ y
C.x = y or relationship can’t be determined.
D.x < y
E.x ≤ y
7) I) x2 – 28x + 195 = 0
II)y2– 25y + 156 = 0
A.x > y
B.x ≥ y
C.x = y or relationship can’t be determined.
D.x < y
E.x ≤ y
8) I) x2 – 14x – 207 = 0
II)y2+ 21y + 108 = 0
A.x > y
B.x ≥ y
C.x = y or relationship can’t be determined.
D.x < y
E.x ≤ y
9) I) x2 – 25x + 100 = 0
II)y2– 27y + 152 = 0
A.x > y
B.x ≥ y
C.x = y or relationship can’t be determined.
D.x < y
E.x ≤ y
10) I) x2 – 9x – 36 = 0
II)y2+ 12y + 32 = 0
A.x > y
B.x ≥ y
C.x = y or relationship can’t be determined.
D.x < y
E.x ≤ y
Answers :
1) Answer: A
24% of 400 – 18 * 4 = ? ÷ 3
96 – 72 = ? ÷ 3
? = 72
2) Answer: C
(132 * 5) ÷ 26 + 87.5 = ?
32.5 + 87.5 = ?
120 = ?
3) Answer: B
(3/8) * (296 – (32 * 4)) = ? * 9
3/8 * (168) = ? * 9
? = 7
4) Answer: E
(143 * 5) ÷ 28 = ? – (13 * 30)
490 = ? – 390
? = 880
5) Answer: A
456 ÷ 19 + 76 = (? * 20) ÷ 3
24 + 76 = (? * 20) ÷ 3
? = 15
6) Answer: E
x2 + 41x + 414 = 0
x2 + 18x + 23x + 414 = 0
x(x + 18) + 23(x + 18) = 0
(x + 23)(x + 18) = 0
x = -23, -18
y2 + y – 306 = 0
y2 + 18y – 17y – 306 = 0
y(y + 18) – 17(y + 18) = 0
(y – 17)(y + 18) = 0
y = 17, -18
x ≤ y
7) Answer: B
x2 – 28x + 195 = 0
x2 – 13x – 15x + 195 = 0
x(x – 13) – 15(x – 13) = 0
(x – 15)(x – 13) = 0
x = 15, 13
y2 – 25y + 156 = 0
y2 – 12y – 13y + 156 = 0
y(y – 12) – 13(y – 12) = 0
(y – 13)(y – 12) = 0
y = 13, 12
x ≥ y
8) Answer: B
x2 – 14x – 207 = 0
x2 – 23x + 9x – 207 = 0
x(x – 23) + 9(x – 23) = 0
(x + 9)(x – 23) = 0
x = 23, -9
y2 + 21y + 108 = 0
y2 + 9y + 12y + 108 = 0
y(y + 9) + 12(y + 9) = 0
(y + 12)(y + 9) = 0
y = -12, -9
x ≥ y
9) Answer: C
x2 – 25x + 100 = 0
x2 – 20x – 5x + 100 = 0
x(x – 20) – 5(x – 20) = 0
(x – 5)(x – 20) = 0
x = 5, 20
y2 – 27y + 152 = 0
y2 – 19y – 8y + 152 = 0
y(y – 19) – 8(y – 19) = 0
(y – 8)(y – 19) = 0
y = 8, 19
Relationship between x and y cannot be established
10) Answer: A
x2 – 9x – 36 = 0
x2 – 12x + 3x – 36 = 0
x(x – 12) + 3(x – 12) = 0
(x + 3)(x – 12) = 0
x = -3, 12
y2 + 12y + 32 = 0
y2 + 8y + 4y + 32 = 0
y(y + 8) + 4(y + 8) = 0
(y + 4)(y + 8) = 0
y = -4, -8
x > y
This post was last modified on October 25, 2021 1:01 pm