Quantitative Aptitude in Hindi

SBI PO Quantitative Aptitude Questions in Hindi 2019 (Day-38) High Level New Pattern

SBI PO 2019 Notification is about to come and it is the most awaited exam among the aspirants. We all know that new pattern questions are introducing every year in the SBI PO exam. Further, the questions are getting tougher and beyond the level of the candidate’s expectations.

Our IBPS Guide is providing High-Level New Pattern Quantitative Aptitude Questions in Hindi for SBI PO 2019 so the aspirants can practice it on a daily basis. These questions are framed by our skilled experts after understanding your needs thoroughly. Aspirants can practice these high-level questions daily to familiarize with the exact exam pattern. We wish that your rigorous preparation leads you to a successful target of becoming SBI PO.

“Be not afraid of growing slowly; be afraid only of standing still”

[WpProQuiz 6261]

Click Here to View Video Solutions 

Click Here for SBI PO Pre 2019 High-Quality Mocks Exactly on SBI Standard

Click here to View Quantitative Aptitude Questions in English

दिशा-निर्देश (1 – 5): निम्नलिखित आंकड़ों का ध्यानपूर्वक अध्ययन कीजिये और प्रश्नों के उत्तर दीजिये:

6 अन्तर्गम (प्रवेश) पाइप P, Q, R, S, T और U और 6 निर्गम (निकास) पाइप A, B, C, D, E और F हैं। नीचे दिया गया बार ग्राफ 6 अन्तर्गम (प्रवेश) पाइप द्वारा टैंक को भरने में लिए गए समय (घंटों) को दर्शाता है। जबकि पाई चार्ट उसी टैंक को खाली करने के लिए 6 निर्गम (निकास) पाइप द्वारा लिए गए समय (घंटों) के प्रतिशत वितरण को दर्शाता है।

पाई चार्ट का योग 50 घंटे है।

1) पाइप P और Q द्वारा टैंक को भरने में लिया गया समय जब P अपनी वास्तविक क्षमता के 80% के साथ कार्य कर रहा है और पाइप Q अपनी वास्तविक क्षमता के 30% के साथ कार्य कर रहा है, ‘T1’ है और पाइप P, Q और D द्वारा उसी टैंक को भरने में लिया गया समय जब सभी पाइप अपनी वास्तविक क्षमता के साथ काम कर रहे हैं, ‘T2’ है, तो ‘T1’ और ‘T2’ के बीच में क्या अंतर है?

a) 45 मिनट

b) 30 मिनट

c) 50 मिनट

d) 60 मिनट

e) इनमें से कोई नहीं

2) यदि सभी तीनों पाइप प्रत्येक 1 घंटे के लिए वैकल्पिक रूप से पाइप U से शुरू करके उसके बाद A और फिर F से कार्य कर रहे हैं, तो टैंक को भरने के लिए पाइप U, A और F द्वारा लिया गया कुल समय क्या है? मान लीजिए कि पाइप U अपनी वास्तविक क्षमता से 33 (1/3)% अधिक क्षमता के साथ कार्य कर रहा है, पाइप F अपनी वास्तविक क्षमता के आधे हिस्से के साथ कार्य कर रहा है और पाइप A अपनी वास्तविक क्षमता के साथ कार्य कर रहा है?

a) 30 घंटे

b) 15 घंटे

c) 20 घंटे

d) 10 घंटे

e) इनमें से कोई नहीं

3) पाइप T और C एक साथ टैंक को भरना शुरू करते हैं और ‘N’ घंटे के लिए कार्य करने के बाद पाइप T को पाइप S के साथ परिवर्तित कर दिया गया है और 1 अन्य घंटे के लिए कार्य करने के बाद पाइप C को पाइप D के साथ परिवर्तित कर दिया गया है। अब 1 अन्य घंटे के लिए कार्य करने के बाद D ने कार्य करना बंद कर दिया और यह टैंक को भरने में 12 अधिक मिनट का समय लेता है, फिर ‘N’ का मान क्या है?

a) 2

b) 1.5

c) 3

d) 2.5

e) इनमें से कोई नहीं

4) दो पाइप R और E एक साथ टैंक को ‘N’ घंटों में भर सकते हैं। यदि तीन पाइप U, A और F एक साथ उसी टैंक को भरना शुरू करते हैं, तो पाइप A को कितने समय बाद कार्य करना बंद कर देना चाहिए, ताकि इस व्यवस्था में टैंक को भरने में लिया गया कुल समय ’N’ घंटे हो?

a) 6 घंटे

b) 7 घंटे

c) 8 घंटे

d) 9 घंटे

e) इनमें से कोई नहीं

5) तीन पाइप R, S और D एक साथ टैंक को भरना शुरू करते हैं और 40 मिनट के लिए कार्य करने के बाद, पाइप S को पाइप C से परिवर्तित किया गया है, फिर टैंक के शेष भाग को भरने के लिए पाइप R, C और D द्वारा एक साथ लिया गया कुल समय क्या होगा?

a) 6 घंटे

b) 8 घंटे

c) 10 घंटे

d) 12 घंटे

e) इनमें से कोई नहीं

6) राम और सुनील की वर्तमान आयु का अनुपात 3: 4 है और सुनील और राहुल की आयु की गुणक 864 वर्ष है। यदि राम और शॉन की आयु का अनुपात 3: 2 है और शॉन और सुनील की आयु की गुणक 648 वर्ष है।

उपरोक्त प्रश्न में दिए गए कथन से, निम्नलिखित में से कौन सा निर्धारित किया जा सकता है।

A) राम की आयु

B) राहुल की आयु

C) यदि राहुल से सूर्या की आयु का अनुपात 4: 3 है, तो सूर्या की आयु।

D) यदि शॉन और नीतीश की आयु का योग 30 वर्ष है, तो नीतीश की आयु।

a) सभी A, B, C और D

b) केवल B और C

c) केवल D और B

d) केवल A

e) निर्धारित नहीं किया जा सकता है

7) यदि वृत्त की त्रिज्या और बेलन की त्रिज्या का अनुपात 1: 2 है और बेलन की ऊंचाई, बेलन की त्रिज्या की तुलना में 10 सेमी अधिक है। शंकु की त्रिज्या और ऊँचाई क्रमशः वृत्त की त्रिज्या और बेलन की ऊँचाई है और वृत्त की परिधि 44 सेमी है।

उपरोक्त प्रश्न में दिए गए कथन से, निम्नलिखित में से कौन सा निर्धारित किया जा सकता है।

A) बेलन का आयतन

B) शंकु की लंबाई

C) शंकु का वक्र पृष्ठ क्षेत्रफल

D) बेलन का सम्पूर्ण पृष्ठ क्षेत्रफल

a) सभी A, B, C और D

b) केवल B और C

c) केवल D और B

d) केवल A

e) निर्धारित नहीं किया जा सकता है

8) फ्रैंक और प्रिंस ने क्रमशः x रु, और (x + 2000) रु के निवेश के साथ व्यवसाय शुरू किया। 4 महीने के बाद सैम (x – 1000) रु के साथ शामिल हो गया और फ्रैंक ने अपने शुरुआती निवेश में x रु जमा किए। एक वर्ष के अंत में कुल लाभ 12000 रुपये और फ्रैंक के लाभ का हिस्सा 5000 रुपये है।

उपरोक्त प्रश्न में दिए गए कथन से, निम्नलिखित में से कौन सा निर्धारित किया जा सकता है।

A) x का मान

B) सैम के लाभ का हिस्सा

C) प्रिंस 5 वर्ष के लिए साधारण ब्याज पर अपने लाभ के हिस्से का निवेश करता है। 5 वर्ष बाद प्रिंस द्वारा प्राप्त ब्याज को ज्ञात कीजिये।

D) सैम का प्रारंभिक निवेश

a) सभी A, B, C और D

b) केवल B और C

c) केवल D और B

d) केवल Aऔर B

e) केवल A, B और D

9) एक नाव _______ किमी धारा-अनुकूल तय कर सकती है और वास्तविक स्थिति में ______ घंटों में वापसी करती है और धारा की गति और नाव की गति का अनुपात 2: 3 है। धारा की गति ______ किमी प्रति घंटा है।

A) 40, 8, 16

B) 50, 10, 14

C) 60, 12, 12

D) 70, 14, 10

a) केवल B

b) केवल A, B

c) केवल C

d) केवल B, D

e) केवल A

10) एक दूधवाले के पास 4: 3 के अनुपात में दूध और पानी का _______ लीटर का मिश्रण है। ______ लीटर के मिश्रण का विक्रय किया गया है और इसे 30 लीटर दूध और 15 लीटर पानी से परिवर्तित किया गया है। अब अंतिम मिश्रण में दूध और पानी का अनुपात 3: 2 है।

A) 120 लीटर, 15 लीटर

B) 100 लीटर, 10 लीटर

C) 90 लीटर, 20 लीटर

D) 130 लीटर, 25 लीटर

a) केवल B

b) केवल A, B

c) केवल C

d) केवल A, D

e) केवल A

Answers :

दिशा-निर्देश (1 – 5):

टैंक को खाली करने के लिए पाइप A द्वारा लिया गया समय = 50 का 30% = 15 घंटे

टैंक को खाली करने के लिए पाइप B द्वारा लिया गया समय = 50 का 6% = 3 घंटे

टैंक को खाली करने के लिए पाइप C द्वारा लिया गया समय = 50 का 24% = 12 घंटे

टैंक को खाली करने के लिए पाइप D द्वारा लिया गया समय = 50 का 12%= 6 घंटे

टैंक को खाली करने के लिए पाइप E द्वारा लिया गया समय = 50 का 8%= 4 घंटे

टैंक को खाली करने के लिए पाइप F द्वारा लिया गया समय = 50 का 20%= 10 घंटे

1) उत्तर: b)

अपनी वास्तविक क्षमता के 80% के साथ कार्य करते समय अकेले पाइप P द्वारा लिया गया समय

= 2 * (100/80) = 2.5 घंटे

अपनी वास्तविक क्षमता के 30% के साथ कार्य करते समय अकेले पाइप Q द्वारा लिया गया समय

= 3 * (100/30) = 10 घंटे

T1 = 1 / [(1 / 2.5) + (1/10)]

T1 = 2 घंटे

पाइप, P, Q और D द्वारा एक साथ उसी टैंक को भरने में लिया गया समय,जब सभी पाइप अपनी वास्तविक क्षमता के साथ कार्य कर रहे हैं = T2 = 1 / [(1/2) + (1/3) – (1/6)]

T2 = 1.5 घंटे

आवश्यक अंतर = 2 – 1.5 = 0.5 घंटे = 30 मिनट

2) उत्तर: c)

अपनी वास्तविक क्षमता के 33(1/3)%अधिक के साथ कार्य करते समय टैंक को भरने के लिए अकेले पाइप U द्वारा लिया गया समय = 5 * (3/4) = 3.75 घंटे

अपनी वास्तविक क्षमता के 50% के साथ कार्य करते समय टैंक को खाली करने के लिए अकेले पाइप F द्वारा लिया गया समय = 10 * 2 = 20 घंटे

चूंकि, सभी पाइपों को प्रत्येक 1 घंटे के लिए खोला गया है, फिर पहले 3 घंटों में टैंक का भरा हिस्सा = (1 / 3.75) – (1/20) – (1/15) = (16 – 3 – 4) / 60 = 9/60 = 3/20

पूरे टैंक को भरने में लिया गया समय = (20/3) * 3 = 20 घंटे

3) उत्तर: a)

टैंक को भरने के लिए अकेले पाइप S और T द्वारा लिया गया समय क्रमशः 2.4 घंटे और 4 घंटे है और टैंक को खाली करने के लिए अकेले पाइप C और D द्वारा लिया गया समय क्रमशः 12 घंटे और 6 घंटे है।

माना, टैंक की कुल क्षमता = 24 (2.4, 4, 12 और 6 का लघुत्तम समापवर्त्य)

एक घंटे में पाइप S और T द्वारा भरे गए टैंक का हिस्सा क्रमशः 10 और 6 है।

एक घंटे में पाइप C और D द्वारा खाली किए गए टैंक का हिस्सा क्रमशः 2 और 4 है।

पहले N घंटे में भरा गया टैंक का हिस्सा = N * (6 – 2) = 4N

अगले 2 घंटे 12 मिनट में भरा गया टैंक का हिस्सा

= (10 – 2) + (10 – 4) + 10 * (12/60)

= 8 + 6 + 2 = 16

प्रश्न के अनुसार:

4N + 16 = 24

4N = 8

N = 2

4) उत्तर: d)

पाइप R और E एक साथ द्वारा टैंक को भरने में लिया गया समय = N = 1/[(1/3.2) – (1/4)]

N = 16 घंटे

माना, समय जिसके बाद A को कार्य करना बंद कर देना चाहिए = ‘T’ घंटे

प्रश्न के अनुसार:

T * [(1/5) – (1/15) – (1/10)] + (16 – T) * [(1/5) – (1/10)] = 1

(T/30) + 3(16 – T)/30 = 1

T + 48 – 3T = 30

2T = 48 – 30

T = 9 घंटे

5) उत्तर: c)

पाइप R, S और D द्वारा एक साथ 40 मिनट में भरा टैंक का हिस्सा

= (40/60) * [(1 / 3.2) + (1 / 2.4) – (1/6)] = 3/8

टैंक का शेष हिस्सा = 1 – (3/8) = 5/8

पाइप R, C और D द्वारा एक साथ 1 घंटे में भरा गया टैंक का हिस्सा

= (1 / 3.2) – (1/12) – (1/6) = 1/16

टैंक के शेष भाग को भरने में लिया गया आवश्यक समय = (5/8) ÷ (1/16)

= 10 घंटे

6)उत्तर: a)

राम, सुनील और शॉन की आयु का अनुपात है,

राम: सुनील: शॉन = 3: 4: 2

शॉन और सुनील की उम्र की गुणा है,

4x * 2x = 648

x = 9 वर्ष

शॉन की आयु = 2 * 9 = 18 वर्ष

सुनील की आयु = 4 * 9=36 वर्ष

राम की आयु = 3 * 9=27 वर्ष

सुनील और राहुल की उम्र की गुणा 864 वर्ष है। इसलिए,

राहुल की आयु = 864/36 = 24 वर्ष

राहुल से सूर्या की आयु का अनुपात 4: 3 है, फिर

सूर्या की आयु =  (3/4) * 24= 18 वर्ष

शॉन और नीतीश की आयु का योग 30 वर्ष है। इसलिए,

नीतीश की आयु = 30 – 12 = 18 वर्ष

हम दिए गए सभी प्रश्नों के उत्तर को ज्ञात कर सकते हैं।

7) उत्तर: a)

वृत्त की परिधि 44 सेमी है।

44=2 * (22/7) * r

वृत्त की त्रिज्या = 7 सेमी

बेलन से वृत्त की त्रिज्या का अनुपात 1: 2 है। इसलिए,

बेलन की त्रिज्या=(2/1)* 7=14 सेमी

बेलन की ऊंचाई, बेलन की त्रिज्या की तुलना में 10 सेमी अधिक है। इसलिए,

बेलन की ऊंचाई=14 + 10=24 सेमी

बेलन का आयतन =πr2 h

(22/7) * 14 * 14 * 24=14784 सेमी3

बेलन का सम्पूर्ण पृष्ठ क्षेत्रफल=2πr (h + r)

2 * (22/7) * 7(7 + 24)=1364 सेमी2

शंकु की त्रिज्या = वृत्त की त्रिज्या = 7 सेमी

शंकु की ऊंचाई = बेलन की ऊँचाई = 24 सेमी

शंकु की लंबाई=√ (242 + 72) = 25 सेमी

शंकु का वक्र पृष्ठ क्षेत्रफल =πrl

22/7 * 7 * 25=550 सेमी2

हम दिए गए सभी प्रश्नों के उत्तर को ज्ञात कर सकते हैं।

8) उत्तर: e)

A, B, C का लाभ अनुपात=(x * 4 + 2x * 8):((x + 2000) * 12):(x – 1000) *8

20x:(12x + 24000):(8x – 8000)

फ्रैंक के लाभ का हिस्सा 5000 रुपये है और कुल लाभ 12000 रुपये है। इसलिए,

20x/(40x + 16000)=5000/12000

200x + 80000=240x

40x=80000

x=2000

A, B, C का लाभ अनुपात = 40000: 48000: 8000 = 5: 6: 1

सैम के लाभ का हिस्सा = 1/12 * 12000 = 1000

सैम का प्रारंभिक निवेश = 2000 – 1000 = 1000

प्रिंस के लाभ का हिस्सा = 6/12 * 12000 = 6000

ब्याज दर नहीं दी गई है। इसलिए हम 5 वर्षों के बाद राजकुमार द्वारा प्राप्त ब्याज को ज्ञात नहीं कर सकते हैं।

हम केवल A, B और D प्रश्नों के उत्तर को ज्ञात कर सकते हैं।

9) उत्तर: c)

नाव के लिए धारा से गति का अनुपात 2: 3 है।

नाव की गति = 3x

धारा की गति = 2x

धारा-अनुकूल गति = 3x + 2x = 5x

धारा-प्रतिकूल गति = 3x – 2x = x

विकल्प (A) से

(40 / 5x) + (40 / x) = 8

48 = 8x

x = 6

धारा की गति = 2 * 6 = 12 किमी प्रति घंटा

यह दी गई शर्तों को संतुष्ट नहीं करेगा।

विकल्प (B) से

(50 / 5x) + (50 / x) = 10

60 = 10x

x = 6

धारा की गति = 2 * 6 = 12 किमी प्रति घंटा

यह दी गई शर्तों को संतुष्ट नहीं करेगा।

विकल्प (C) से

(60 / 5x) + (60 / x) = 12

72 = 12x

x = 6

धारा की गति = 2 * 6 = 12 किमी प्रति घंटा

यह दी गई शर्तों को संतुष्ट करेगा।

विकल्प (D) से

(70 / 5x) + (70 / x) = 14

84 = 14x

x = 6

धारा की गति = 2 * 6 = 12 किमी प्रति घंटा

यह दी गई शर्तों को संतुष्ट नहीं करेगा।

10) उत्तर: d)

पहले मिश्रण का अनुपात = 4: 3 (यहाँ यह विक्रय के बाद का मिश्रण है)

दूसरे मिश्रण का अनुपात = 30: 15 = 2: 1

अंतिम मिश्रण का अनुपात = 3: 5

फिर (1) और (2) के मिश्रण का अनुपात है,

=7:3

मिश्रण को विक्रय करने के बाद और फिर मिश्रण की मात्रा=(7/3)* (30+15)=105 लीटर

विकल्प (A) से

यदि, विक्रय किया गया मिश्रण =15 लीटर

प्रारंभिक मिश्रण की मात्रा =105 + 15=120 लीटर

यह दी गई शर्तों को संतुष्ट करेगा।

विकल्प (B) से

यदि, विक्रय किया गया मिश्रण =10 लीटर

प्रारंभिक मिश्रण की मात्रा =10 + 105=115 लीटर

यह दी गई शर्तों को संतुष्ट नहीं करेगा।

विकल्प (C) से

यदि, विक्रय किया गया मिश्रण =20 लीटर

प्रारंभिक मिश्रण की मात्रा =105 + 20=125 लीटर

यह दी गई शर्तों को संतुष्टनहीं करेगा।

विकल्प (D) से

यदि, विक्रय किया गया मिश्रण = 25 लीटर

प्रारंभिक मिश्रण की मात्रा = 105 + 25 = 130 लीटर

यह दी गई शर्तों को संतुष्ट करेगा।

This post was last modified on June 3, 2019 3:15 pm